

Soil Health Tests Why, What and How?

Dr. Stacy Zuber IL NRCS State Soil Health Specialist

ILSoyAdvisor Webinar December 9, 2021

Stacy.Zuber@usda.gov

What is soil health?

Soil Health

 The continued capacity of the soil to <u>function</u> as a vital living ecosystem that sustains plants, animals, and humans.

Soil Health Functions 👌 👌 👌

- Produce food, feed, fiber, biofuels & medicine
- Capture, filter, and store water
- Cycle and recycle nutrients
- Resilience to drought, flood & temp extremes
- Protect plants from pathogens and stress
- Detoxify pollutants
- Store C and moderate release of gases
- Resist erosive forces

Soil Health Functions 0 0 0 0 0 0

Difficult to measure directly

Soil health tests are a proxy for measuring soil functions.

Natural Resources Conservation Service

nrcs.usda.gov/

What makes soil health tests different?

Physical

Biological Chemical

Soil Fertility

Soil Health Indicator Requirements

NRCS Tech Note 450-03

Indicator Effectiveness

- Management sensitive
- Short-term sensitivity
 - Within 1 to 3 years for significant management changes.

Interpretable—related to soil function or process

• Standalone or in combination with other tests.

• Useful

 Provides useful information towards assessing soil health status and addressing specific resource concerns

Soil Health Indicator Requirements

NRCS Tech Note 450-03

- Production
 Readiness
 - Ease of Use
 - Cost Effectiveness
- Repeatability

 Interpretable for agricultural management decisions

Natural Resources Conservation Service

Organic Matter Cycling

Soil Organic Matter/Carbon

GRDC, Australia

Conservation Service

nrcs.usda.gov/

Soil Organic Matter/Carbon

- Soil organic matter (SOM)
 - 58% carbon
- Soil organic carbon (SOC)
- May take 3 to 5 years to show appreciable change.
- Could take longer in soils with higher inherent SOM.

Natural Resources Conservation Service

Soil Structure

Infiltration Resistance to Erosion

Soil Matrix

Aggregate Stability

- Different methods available, but usually reported as %.
 - What % of aggregate hold together?

Wilpiszeski et al., 2019, Appl. Environ. Microbiol.

Microaggregate

Readily Available Carbon Food Source

Soil Organic Matter Composition

Active Carbon

- Permanganate oxidizable carbon (POXC)
- Useful indicator of long-term C sequestration.

- Central IN, 5 years of CC & NT 450 400 350 Active 300 bpm 250 200 150 Annual Ryegrass Cereal Rye Dat * Radish No Cover oping Systems
- More sensitive to changes in crop and soil management than SOC.

Water Extractable Organic C

- **Cold-water extractant**
- **Used in Haney Test**
- Rationale is that C that can dissolve in water is most available to microbes.

Microbial Activity

Soil Respiration

- Rewetting dried soil then incubated
- Measures CO₂ release over certain # of hours
 - Commonly either 96 hrs or 24 hrs
- Provided indication of how much the microbes are eating and how active they are.
- Also called "Short-term C mineralization"

Natural Resources Conservation Service

Bioavailable Nitrogen

ACE Soil Protein

- ACE=Acid Citrate Extractable
- Majority of N in soil organic matter is in proteins.
- Indicates amount of organic N that is cycling through microbial biomass and may be released in plant-available forms.

Natural Resources Conservation Service

nrcs.usda.gov.

Water Extractable Organic N 🛆 🖉

- Part of Haney Test
- Same as WEOC.

Natural Resources Conservation Service

Microbial & Functional Diversity

Enzyme Activities

- Reflect potential for microbes to convert and cycle nutrients.
- Enzymes are the metabolic protein keys for breaking up larger molecules.
 - Cellulose, DNA, lipids, chitin, lignin, proteins

• Recommended:

- β-glucosidase (BG) for C
- N-acetyl-β-D-glucosaminidase (NAG) for N & C
- Arylsulfatase for S
- Acid/alkaline phosphatase for P

Natural Resources Conservation Service

Phospholipid Fatty Acids (PLFA) 👌 🎸

- Biochemical marker in cell membranes.
- Unique to broad classifications in soil biology.
- Provides an indication of relative abundance of microbial groups and total microbial biomass.

http://www.staff.brookings.k12.sd.us/Reidell/2011%20Facebook%20cells/cellmembrane%20janeg/cell_membrane.png

Natural Resources Conservation Service

nrcs.usda.gov/

Phospholipid Fatty Acids (PLFA) 🕗 🎸

• Typical PLFA groups include:

- Total Microbial Biomass
- Total Bacteria—Gram (+) & Gram (-)
- Total Fungi—Arbuscular Mycorrhizae & Saprophytic
- Protozoa

• Other reported info:

- Fungi: Bacteria
- Predator: Prey (i.e. Protozoa: Bacteria)
- Gram(+): Gram(-)
- Other stress ratios (Sat:Unsat, Mono:Poly, etc.)

Natural Resources Conservation Service

nrcs.usda.dov.

Soil Health Test Packages 👌 👌 🎸

 Becoming more widely available from commercial soil testing labs.

 Sometimes include overall rating of soil health, integrating several metrics together.

> Natural Resources Conservation Service

Comprehensive Assessment of Soil Health

Measured Soil Textural Class: silt loam

Available Water Capacity

Value

0.27

Rating

94

Constraints

Sand: 7% - Silt: 66% - Clay: 26%

Indicator

Group

physical

Percentile ratings based on soils in the CASH database.

physical	Surface Hardness	148	57	th	ne (CA	SH datab	ase.
physical	Subsurface Hardness	241	70					
physical	Aggregate Stability	15.2	19	Aeration, Infiltration, Rooting, Crusting, S Erosion, Runoff	Sealing,			
biological	Organic Matter	3.2	58		Sco • 0	res - 20	between:) → verv low (red	4)
biological	ACE Soil Protein Index	4.2	23		• 2	20 - 4	$40 \rightarrow low (orange$	e)
biological	Soil Respiration	0.3	18	Soil Microbial Abundance and Activity	• 4	0 - 6	60 \rightarrow medium (ye	ellow)
biological	Active Carbon	499	49		• 6	60 - 8 0 - 1	B0 → high (light $(100 \rightarrow yory bigh)$	green) (dark groop)
chemical	Soil pH	6.6	100		• 0	U - 1		(uark green)
chemical	Extractable Phosphorus	4.3	100					
chemical	Extractable Potassium	164.4	100					Natural
chemical	Minor Elements Mg: 538.9 / Fe: 4.0 / Mn: 8.3 / Zn: 0.4		100					Resources Conservation
Overal	I Quality Score: 6	6 / Ex	cellent					nrcs.usda.gov/

- Package available from many commercial labs
- Nitrogen and nutrients component
- Soil Health Measurements
 - Water Extractable Organic C & N
 - 24 hour Soil Respiration/ CO₂ Burst

Haney Soil Health Calculation 👌 👌 🎸

 $CO_2(24hr) \rightarrow Soil Respiration / CO_2 Burst$

WEOC \rightarrow Water Extractable Organic Carbon

WEON \rightarrow Water Extractable Organic Nitrogen

• No specific goal threshold, but look for increase over time.

Natural Resources Conservation Service

nrcs.usda.gov/

How do you interpret soil health test (results?

- Few or no thresholds on soil health tests.
 - Must have a relative comparison.
- Almost all tests are more is better, but limited by soil's potential for improvement.
 - Depends on inherent soil characteristics and forming factors.

Natural Resources Conservation Service

nrcs.usda.gov.

How to Start Soil Health Testing

Decide on Sampling Strategy 👌 👌 👌 🎸

- What is the goal?
- What questions are you trying to answer?
 - Do you want to compare the current soil health indicators of different management practices or of different zones within your field?
 - Do you want to monitor the soil health changes after implementing new practices?

Comparisons or Monitoring 🛆 👌 👌 🎸

- **Comparisons—Management**
- Make sure soil types and landscape position are similar
 - Don't compare apples to oranges.
- Monitoring over time
- Sample every 3-5 years
 - Consider crop rotation-sample in the same phase.
- Consider evaluating different zones or taking a reference sample when you take your baseline
 - Undisturbed area, fence row, long-term pasture, etc.

Natural Resources Conservation Service

nrcs.usda.gov

How many samples per field? 🝐 🍐 🍐 🎸

- Soil health tests (~\$50-120) are more expensive than fertility tests (<\$10) per sample.
 - Can focus on sampling zones of field based on soil type, yield map, etc.
- May only want to sample 1-3 locations per field to monitor.

Sampling Procedures—How? 🝐 🍐 🍐 🎸

- <u>Slice method</u> is recommended—especially for aggregate stability
 - Use tile spade, sharpshooter or straight shovel.
 - Dig hole 8 inches deep.
 - Remove 2-inch thick slice of soil 6-8 inches in depth. Repeat 3-4 times in 20-50 ft area.

Photo credit: Kirsten Kurtz

Sampling Procedures—How? 🝐 🍐 🍐 🎸

- If slice method is not possible:
 - Use soil probe that is 1 inch or more in diameter to 6-8".
 - Collect 15-20 soil cores from appropriate area and composite into single sample.

• For both methods:

- Record GPS coordinates of all sample locations (at least center spot).
- Make sure you collected enough soil
 - Often 3-4 cups, but depends on analyses & lab

Spatial Variability

- Most soil health indicators closely related to soil biology.
- High amount of spatial variability.
- Soil microbes tend to be concentrated in hotspots and are very sensitive to soil environmental conditions.

Natural Resources Conservation Service

nrcs.usda.gov

Sampling Procedures Be CONSISTENT!

- If monitoring over time, take detailed notes to match up conditions for the next time:
 - GPS coordinates
 - Sample depth
 - Residue on the soil surface
 - Proximity to plant roots (row vs inter-row)
 - Soil moisture & temperature
 - Date of sampling
 - Tillage
 - Amendments—manure, lime, NPK, etc.

Natural Resources Conservation Service

Consistency with Lab and Tests Too! Be CONSISTENT!

- Methods may vary between labs.
 - Aggregate Stability
 - PLFA

- How samples are handled may differ
 - Air-drying, sieving, etc.

Natural Resources Conservation Service

nrcs.usda.gov/

Shipping Samples

Check into what your lab recommends

- Most commercial lab tests and packages use airdried samples –no special requirements.
- BUT, soil biological measurements may require next-day shipping or shipping on ice.
 - PLFA
 - Enzymes

Natural Resources Conservation Service

nrcs.usda.gov/

Soil Health Tests

• Follow these recommendations to minimize variability and maximize usefulness of the tests.

• These tests are more sensitive, but small changes may still not be detectable.

• Tests are expensive, make sure you take the time to do them right!

Conservation Service

Thank You! <u>Stacy.Zuber@usda.gov</u> <u>www.il.nrcs.usda.gov</u>

USDA-NRCS is an equal opportunity employer, provider, and lender.

Natural Resources Conservation Service

nrcs.usda.gov/

