

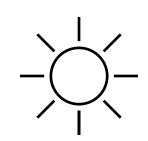
Info

Dustin Bowling, CCA
Western Agronomy Manager
AgriGold Agronomy Since 2011
N. Central Missouri Native

Our Soybean Journey

- AgriGold's soybean journey began in 2016
- Our participation in NCGA contest & high yield corn strategies soon spilled over into soybean management
- Working with Yield Masters has inspired our thinking and pushed us to do our own testing as an agronomy team

Learning from Soybean Yield Masters



Simplify our Strategy
Factory Concept
Soybean – Raw Materials
4Q's of a soybean season

"Putting the plant into a position to win"

Macronutrients

- Carbon (C)
- Oxygen (O)
- Hydrogen (H)
- Nitrogen (N)
- Phosphorous (P)
- Potassium (K)

Secondary

- Calcium (Ca)
- Magnesium (Mg)
- Sulfur (S)

Micronutrients

- Boron (B)
- Chlorine (CI)
- Copper (Cu)
- Iron (Fe)
- Manganese (Mn)
- Molybdenum (Mo)
- Nickel (Ni)
- Zinc (Zn)

Seasonal Timeline

Stand Establishment

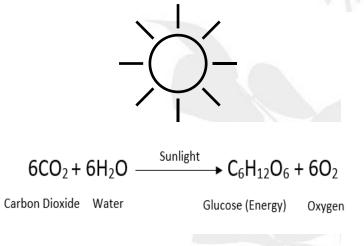
Vegetative Growth

Flowering

Pod Fill

Q1

Q2


Q3

Macronutrients

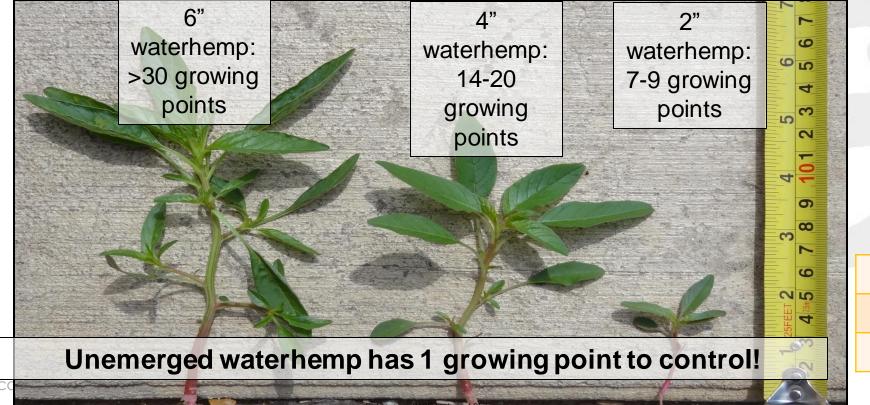
- Carbon (C)
- Oxygen (O)
- Hydrogen (H)

Infrastructure & Energy Energy Energy

Not all plants are created equal when it comes to these nutrients.

Soybean & Carbon Fixation

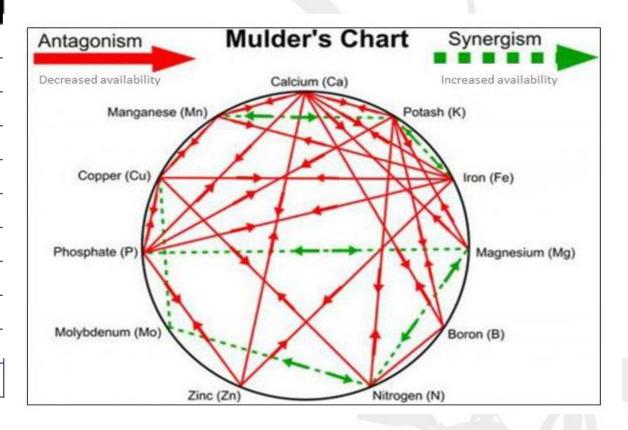
- C3 pathway of photosynthesis Soybean
 - Breathes in CO₂ through stomates and fixes 3 chain carbon molecule
 - Stomates must be open to fix carbon
 - Approximately 85% of the world's plants are C3 120,000 seeds to get 80 bushel
- C4 pathway of photosynthesis Corn
 - Breaths in CO2 through stomates and fixes 4 chain carbon molecule
 - Continue fixing carbon when stomates are closed
 - Tropical Background


30,000 seeds to get 250 bushel

- CAM pathway of photosynthesis Cacti
 - Same as C3 but only operates only at night
 - Dry & Arid Background

Waterhemp is a C4 Plant!

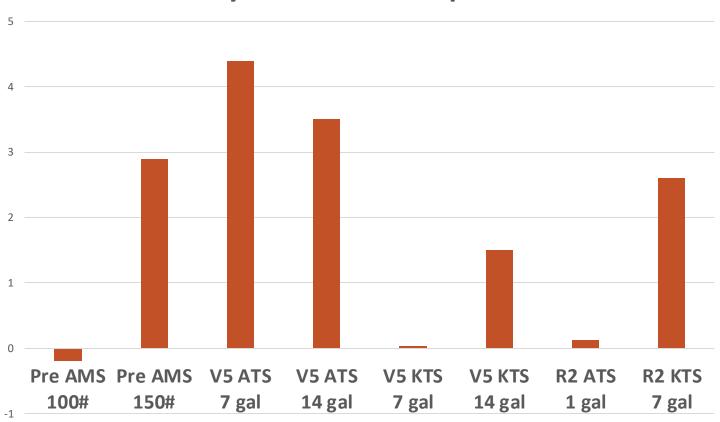
The only way to truly be successful is with pre & post overlapping residuals before R1.



Waterhemp	C4 pathway
Corn	C4 pathway
Soybean	C3 pathway

Raw Materials vs Plant Processes

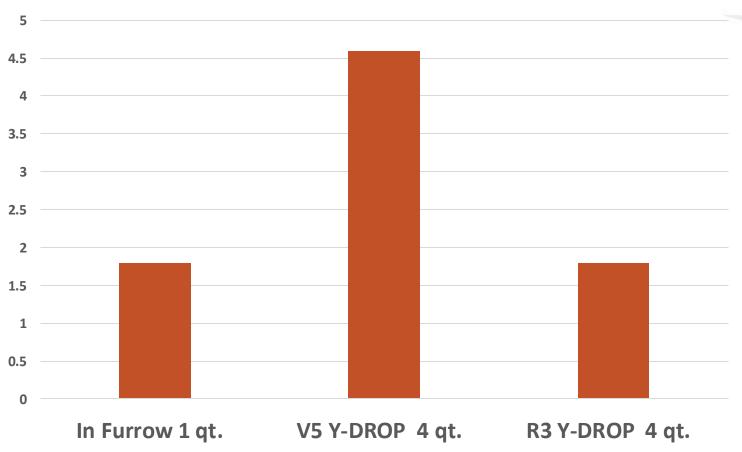
- 12			
Nutrient	Grain	Stover	Total Removal (Ibs)
Nitrogen(N)	325.00	110.00	435.00
Phosphate(P205)	73.00	24.00	97.00
Potassium(K20)	120.00	100.00	220.00
Sulfur(S)	18.00	17.00	35.00
Magnesium(Mg)	15.00	35.00	50.00
Calcium(Ca)	4.05	39.00	43.05
Copper(Cu)	0.10	0.05	0.15
Manganese(Mn)	0.12	.88	1.0
Zinc(Zn)	0.10	0.52	0.62
Boron(B)	0.12	0.58	0.80
Iron(Fe)	1.00	2.0	1.21



100 bu. Per Acre Soybean

Soybean Secondary Nutrient Response

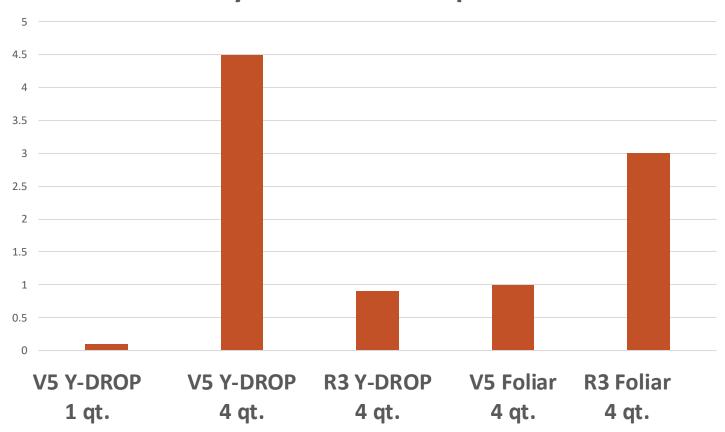
Soybean Sulfur Response



- 2018 AgiGold Agronomy Trials
- 6 locations, MO, IN, OH
- 2018-2020 Missouri ATS = +1.4 bu.
- 7 gal ATS = 9-0-0-20 per acre

Soybean Secondary Nutrient Response

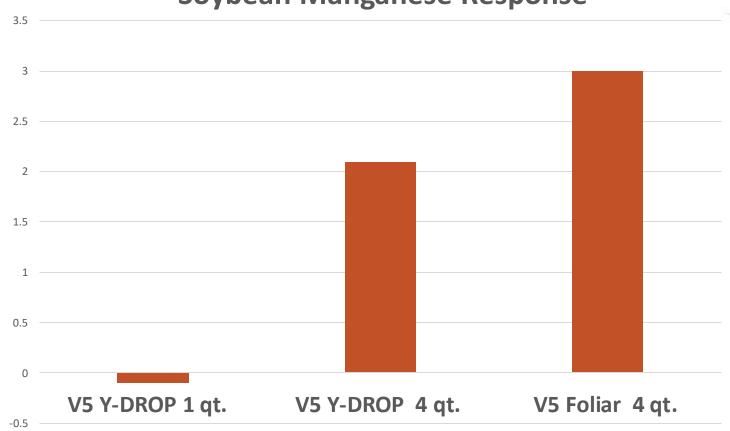
Soybean Calcium Response



- 2018 AgiGold Agronomy Trials
- 6 locations, MO, IN, OH
- 3% calcium product

Soybean Micro-Nutrient Response

Soybean Boron Response



- 2018 AgiGold Agronomy Trials
- 6 locations, MO, IN, OH
- 2018-2019 MO Boron = +2.7 bu.

Soybean Micro-Nutrient Response

Soybean Manganese Response

- 2018 AgiGold Agronomy Trials
- 6 locations, MO, IN, OH
- 6% Manganese product

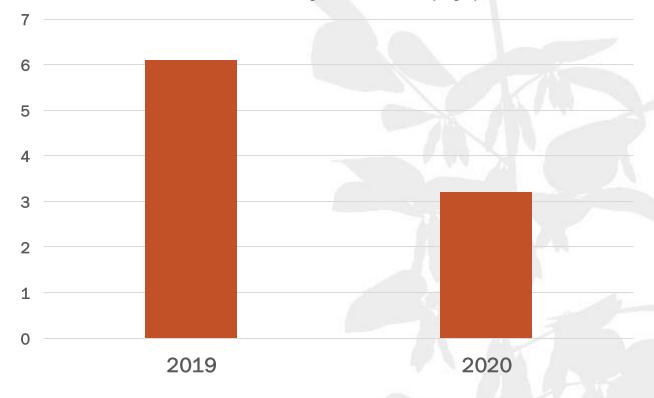
Micro Mix – Corn Yield Environment (2YR)

>225 11 Locs

8 Locs

<200

200-225 17 Locs



Soybean Micro-Nutrient Response

32 oz/Acre	BRANDT Smart Quatro®	Sulfur
8 oz/Acre	BRANDT® Smart Cu [™]	Nitrogen 1.5% Sulfur 2.0% Copper 6.0%
12 oz/Acre	BRANDT® Smart Fe™	Sulfur

2 yr. avg. <u>+4.7 bu.</u> vs check 55-60 bu. average yields Foliar applied @ R1

Micro Mix Soybean MO (2yr)

SOYBEAN TISSUE SAMPLING

Trial Run with AgriGold Agronomists in 2020

- Collected 71 samples
- Yields ranged from 45 105 bu/A

- The most important part about stand establishment is when you start!
 - The size of the factory depends on timing

April 15th

Stand Establishment

May 15th

June 15th

How big can the factory get?

Fall City, NEB

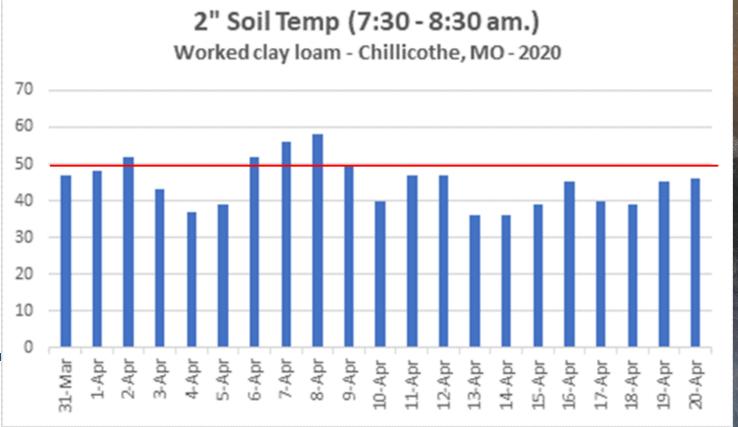
G3520RX 30 in rows 20K population

G3520RX 60 in rows Twin Row 50K population

- Soybean cold tolerance is better than I thought
 - Chilling injury is usually the main concern early

	Soybean	Corn		
Imbibitional Phase	6 to 24 hours	48 hours		
Min. soil temperature	50° F	50° F		
The warmer the soil temperature the faster the water intake				

Variety	Planting Date	Yield
G3722RX	April 8, 2020	47.2
G3722RX	April 21, 2020	47.1


Planting Date Study - Chillicothe, MO

Seasonal Timeline

Stand Establishment

- Soybean cold tolerance is better than I thought
 - Planting date & seed treatment studies

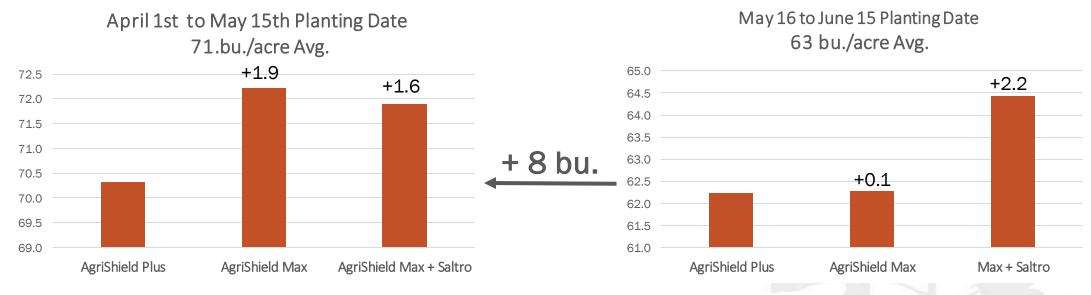
- Soybean early planting & seed treatments
 - Planting date & seed treatment studies

Variety	Treatment	Yield
G3620RX	AgriShield Plus	45.2
G3620RX	AgriShield Max	48.7
G3620RX	AgriShield Max w/Saltro	52.2

Chillicothe, MO Planted 4-8-20

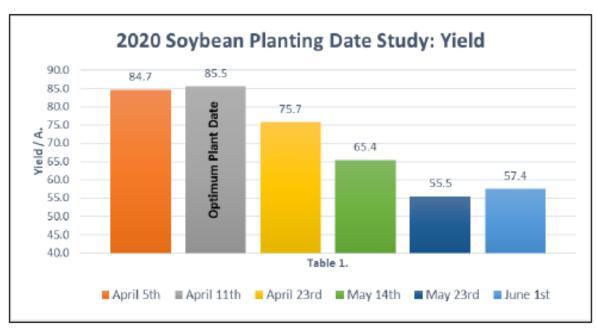
+7.0 bu. w/Saltro

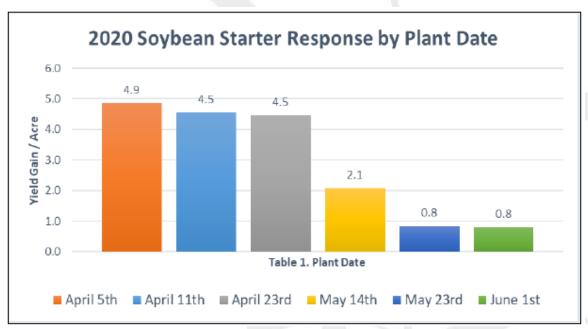
Stand Establishment



2020 Seed Treatment Breakdown by Planting Dates

National Data 2020 – 33 locations





National Data 2020 – 23 locations

Early start & response to fertility

- 2020 Precision Planting PTI Yield Summary
- 130,000 population
- 20" row spacing

- The most forgiving quarter of growth
 - Focus on herbicide program completion
 - Avoid damage below cotyledons
 - Relatively low nutrient needs

Nutrient Uptake per Day for Various Growth Periods of soybean --- Yield 101 bu/A

Sampling Stage	Days in	Nutrient Uptake per Day (lb/A)			Total	Uptake (lb/A)
	Period	N	P2O5	K2O	N	P2O5	K2O
3rd Trifoliate	40	0.75	0.25	0.68	30	10	27
6th Trifoliate	11	1.45	0.55	2.72	16	6	30
Full Bloom	16	7.81	1.75	5.75	125	28	92

Reference: Flannery, Roy. Rutgers University. 1986 Better Crops with Plant Food, 6-7 Tisdale, et al. 1993. Soil Fertility and Fertilizers, Chapter 7.

Stand Establishment

Vegetative Growth

Auxiliary buds emerge after May 9th frost

- (R1) flowering marks the beginning of Q3
 - Nutrient demands skyrocket
 - Plant starts reproductive processes
 - Plant still needs to achieve two thirds of its plant height
- Maximizing photosynthesis, water, & sunlight directly correlate with yield gains

Seasonal	
Timeline	

Stand Establishment

Vegetative Growth

Flowering

Q1

Q2

Nutrient demands skyrocket

Nutrient Uptake for 101 bu. Yield

Sampling Stage	Days in	Nutrient	Nutrient Uptake per Day (lb/A)			Uptake (lb/A)
	Period	N	P2O5	K2O	N	P2O5	K20
3rd Trifoliate	40	0.75	0.25	0.68	30	10	27
6th Trifoliate	11	1.45	0.55	2.72	16	6	30
Full Bloom	16	7.81	1.75	5.75	125	28	92
Early pod	15	9.13	2.27	9.6	137	34	144
Soft Seed	21	11.43	2.76	2.43	240	58	51
Near mature	16	-3.38	-1.25	-2.25	-5.4	-20	-36
Total (lb/A)	119				494	116	308
Reference: Flannery, Roy. Rutge al. 1993. Soil Fertility and Fertilize		etter Crops w ith Plant Fo	od, 6-7 Tisdale, et	lb/bu	4.89	1.15	3.05

Seasonal Timeline

Stand Establishment

Vegetative Growth

Flowering

Pod Fill

Q1

Q2

Q3

- (R3) Pod formation marks the beginning of Q4
 - Source to Sink relationship begins to change
 - All available nutrients begin to move to the seed
 - Foliar feed opportunities
 - Water usage peaks during grain fill
 - Extending the grain fill period is key
 - Fungicide applications, etc.

Seasonal	
Timeline	

Stand Establishment

Vegetative Growth

Flowering

Pod Fill

2

Q3

Q4

- (R3) Pod formation marks the beginning of Q4
 - Water usage peaks

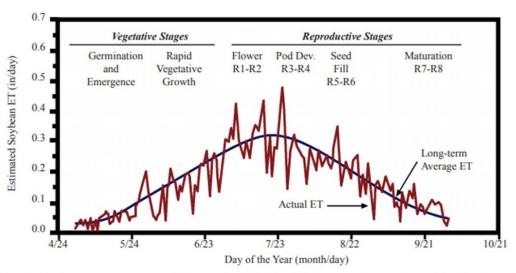
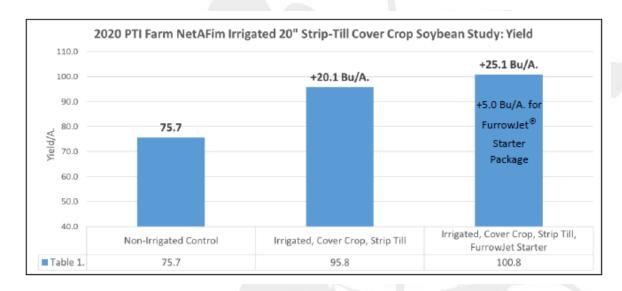
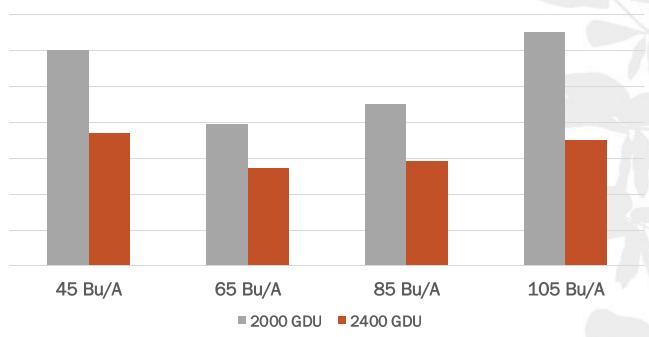



Figure 1. Soybean crop water use or daily evapotranspiration (ET) from a well-watered crop. The blue line depicts the expected ET based on historical data, whereas the red line depicts the daily ET for a specific growing season. Source: High Plains Regional Climate Center Data Archives



2020 PTI Yield Summary – 9" of water applied via drip tape

- (R3) Pod formation marks the beginning of Q4
 - Water & Sunlight = Nutrient Movement to the seed

- September is key for strong finish
 - If water & sunlight are available, heat will drive more grain fill
 - Explains RM limitations in some areas
 - Explains movement to earlier RM's in areas adopting earlier planting dates

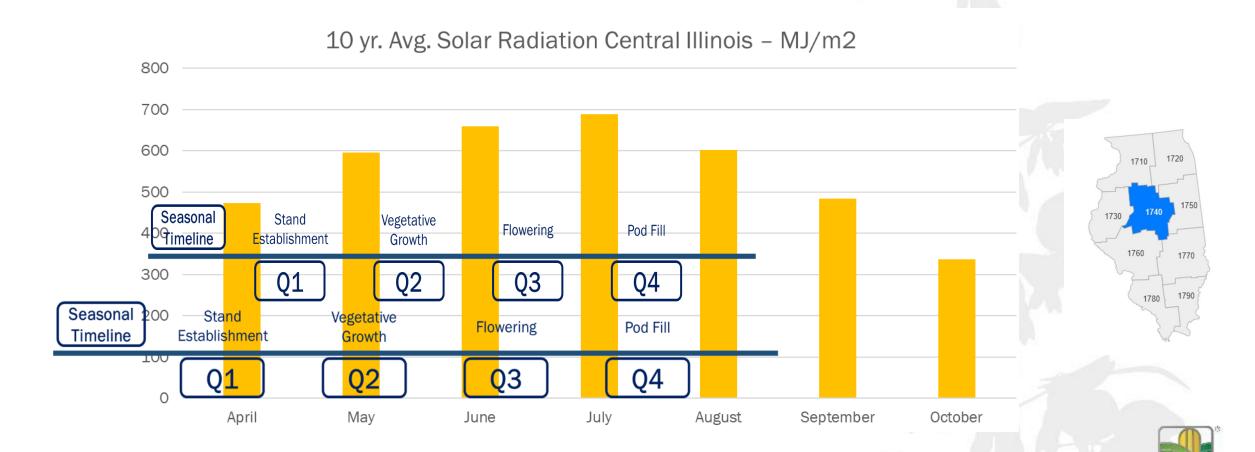
Sea	sonal
Tim	neline

Stand Establishment

Vegetative Growth

Flowering

Pod Fill



1 | |

Q2

Q3

Maximizing Power to the Factory

The Soybean Factory Summary

Simplify our Strategy

- Soybeans were made for an early start
- Building a better factory with fertility
- 4Q's of a soybean season
- Water & Sunlight in second half are key

"Putting the plant into a position to win"

THANK YOU!

Dustin Bowling
Western Agronomy Manager
dustin.bowling@agrigold.com
@agold_dustin