Understanding Biologicals for Improved Soybean Management Connor Sible Crop Physiology Laboratory Department of Crop Sciences University of Illinois at Urbana-Champaign

Illinois Soybean Association Webinar July 22nd, 2021

Is Soybean Currently Managed Adequately?

Are we achieving full yield potential?

Test Your Knowledge of High Yield Soybean

 What is the world record soybean yield and what is the soybean yield gap?

The Soybean Yield Gap

- World Record yield of 190.2 bushels per acre in 2019
- US average record yield of 52 bushels per acre in 2016

(Illinois record is 64 in 2018)

 Yield Gap = Record Yield – Average Yield = 138 bushels

Soybean Yield Components

Yield = Pod number/acre x

Seeds per pod x Weight per seed

How Does Pod Number Effect Soybean Yield

Traditional Approaches to Soybean Management

Standard Management Practices

- Variety Selection for Region (Illinois Ranges II-IV)
- Plant Populations 80k-160k
- Earlier Planting Dates

Credit: Vitor Favoretto

Standard Management Practices

- Variety Selection for Region (Illinois Ranges II-IV)
- Plant Populations 80k-160k
- Earlier Planting Dates
- Fertility Leftovers from Previous Corn Crop
- Fungicide/Insecticide @ R3

How else can we manage soybean?

Biologicals!

How Can Biologicals Be Used?

- Seed Treatments
- In-Furrow (with starter fertilizer)
- Foliar Vegetative Stages (with post herbicide)
- Foliar Reproductive Stages (with fungicide/insecticide)
- On dry fertilizers
- On crop residues

What are Biologicals?

- Plant Growth Regulators (PGRs)
- Beneficial Microbes
- Biostimulants

What are Biologicals?

•Beneficial Microbes "The Living"

•Biostimulants "The Dead"

Current Leading Biostimulant Description in the US 2018 US Farm Bill –

"A "plant biostimulant" is considered a substance or micro-organism that, when applied to seeds, plants, or the rhizosphere, stimulates processes to enhance or benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality and yield."

Current Leading Biostimulant Description in the US 2018 US Farm Bill –

"A "plant biostimulant" is considered a substance or micro-organism that, when applied to seeds, plants, or the rhizosphere, stimulates processes to enhance or benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality and yield."

Current Leading Biostimulant Description in the US 2018 US Farm Bill –

"A "plant biostimulant" is considered a substance or micro-organism that, when applied to seeds, plants, or the rhizosphere, stimulates processes to enhance or benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality and yield."

What are Biologicals?

What are Biologicals? Stressful Question!

2017 (Before Biostimulant Research)

2020 (After Biostimulant Research)

- Nitrogen-Fixing Bacteria
- P-Solubilizing Bacteria
- Mycorrhizal Fungi
- Enzymes (Phosphatases)
- Humic/Fulvic Acids
- Marine Extracts
- Sugars

Beneficial Microbes

Biostimulants

Test Your Knowledge of High Yield Soybean How much N do soybean plants need to accumulate per each bushel of grain? 4 to 5 lbs of N per Bushel

- Nitrogen-Fixing Bacteria Increase Plant Available N
- Legume Rhizobium Relationship

Test Your Knowledge of High Yield Soybean

 How much of soybean's N comes from the nodules?

About half or 50%

Alternate N Sources for Soybean

Are there other opportunities to enhance nitrogen fixation?

- Nitrogen-Fixing Bacteria Increase Plant Available N
- Non-Rhizobia microbes Root and/or leaf colonization to provide supplemental nitrogen

Continually fixes N in root zone

Colonizes inside the plant roots and leaves

Effect of N-Fixers on S	Soybean G	rain Yield
Treatment	Yield	Δ
	bushels	per acre
Untreated Control	45.8	
In-Furrow Applied Proven	48.6	+2.8
In-Furrow Applied Envita	47.5	+1.7
V4 Foliar Applied Envita	47.6	+1.8

Research of Vitor Favoretto

Key Takeaways – N-Fixers

- Biologically fixed nitrogen from an applied biological product can increase soybean grain yields
- New and innovative biologicals are able to provide alternative approaches to N-fixation in soybean, opening space for seed treatment

- Nitrogen-Fixing Bacteria Increase Plant Available N
- P-Solubilizing Bacteria Increase Availability of Mineral P
- Mycorrhizal Fungi
- Enzymes (Phosphatases)
- Humic/Fulvic Acids
- Marine Extracts
- Sugars

P-Solubilizing Bacteria – Increase Availability of Mineral P

Key Takeaways – PSB

- Optimization of grain yield with PSB relies on adequate soil contact near the growing root to supply P for immediate uptake
- PSB can increase season-long phosphorus availability, essential to optimize grain fill

P Uptake & Partitioning for 60 Bushel Soybean

Key Takeaways – PSB

- Optimization of grain yield with PSB relies on adequate soil contact near the growing root to supply P for immediate uptake
- PSB can increase season-long phosphorus availability, essential to optimize grain fill

- Nitrogen-Fixing Bacteria Increase Plant Available N
- P-Solubilizing Bacteria Increase Availability of Mineral P
- Mycorrhizal Fungi Extension of the Root System
- Enzymes (Phosphatases)
- Humic/Fulvic Acids
- Marine Extracts
- Sugars

Mycorrhizal Fungi – Extension of the Root System

- Fungi are microorganisms (yeasts, molds, mushrooms)
- Arbuscular Mycorrhizal Fungi (AMF) growth with roots increasing surface area

Mycorrhizal Fungi – Extension of the Root System

Key Takeaways – AMF

- Seed inoculation of AMF provides the biological with the greatest potential of success by placing the product as close to the seedling as possible
- The source of the inoculum does impact efficacy, and the environment/crop in which applied may determine which source is optimal

- Nitrogen-Fixing Bacteria Increase Plant Available N
- P-Solubilizing Bacteria Increase Availability of Mineral P
- Mycorrhizal Fungi Extension of the Root System
- Enzymes (Phosphatases) Increase Availability of Organic P
- Humic/Fulvic Acids
- Marine Extracts
- Sugars

Enzymes (Phosphatases) – Increase Availability of Organic P

Plant Unavailable

Plant Available

Are all phosphatases the same?

Guaranteed Analysis CONTAINS NON-PLANT FOOD INGREDIENT: Soil Amending Ingredient: Phospholipase C (18,900 µU/Gal (5000 nU/mL)

Lipase

Key Takeaways – Phosphatases

- Phosphatases provide access to organic soil P
- Not all phosphatases are the same, and each varies in its targeted organic form of phosphorus
- Variations in soil environment regarding native P levels and soil organic matter concentrations determine which enzyme is best for that field

Biological Synergy?

- Phosphorus solubilizing microbes increase mineral P availability
- Phosphatase enzymes increase organic P availability
- Two biologicals increasing availability of 2 different P pools – Provides soil P for a crop that is typically not fertilized with synthetic P

- Nitrogen-Fixing Bacteria Increase Plant Available N
- P-Solubilizing Bacteria Increase Availability of Mineral P
- Mycorrhizal Fungi Extension of the Root System
- Enzymes (Phosphatases) Increase Availability of Organic P
- Humic/Fulvic Acids Chelate Soil Cations and Feed Microbes
- Marine Extracts
- Sugars

Humic/Fulvic Acids – Chelate Soil Cations and Feed Microbes

- Functional groups (COO⁻¹) help chelate cations (Ca⁺², Al⁺³, Zn⁺²)
 - Chelation of cations keeps P available, and supplies Zn
- High carbon content feeds soil microbes, stimulates root zone

A LIQUID LEONARDITE ADJUVANT

ACTIVE INGREDIENTS:

12.00%	Humic Acids (Derived from Leonardite)
88.00%	INERT INGREDIENTS
100.00%	TOTAL

Fertilizer Micro-Nutrient for Fruits, Nuts, Vegetables, Field Crops, Turf and Ornamentals

GUARANTEED ANALYSIS:	
Zinc (Zn)	
0.5% Chelated Zinc (Zn)	
Derived from: Zinc EDTA	

A Concentrated Mixture of Humic Acid

Humitech® LMW Humic Acid

Derived from Leonardite

Effect of Humic/Fulvic Acids on Soybean Grain Yield

Treatment	Yield	Δ	
	——bushels per acre ——		
Untreated Control	53.5		
In-Furrow Fulvic Acid	52.8	-0.7	
Soil Broadcast Fulvic Acid	55.4	+1.9	
In-Furrow Humic Acid	54.4	+0.9	
Soil Broadcast Humic Acid	54.2	+0.7	

Untreated (left rows) vs Fulvic Acid In-furrow (right rows)

Key Takeaways – Humic/Fulvic Acids

- Humic/Fulvic acids applied to the soil can benefit soybean grain yields
- Interactions with soil nutrients and microbial communities promotes greater crop growth
- Larger leaves and quicker row closure optimizes sunlight interception for better yields

- Nitrogen-Fixing Bacteria Increase Plant Available N
- P-Solubilizing Bacteria Increase Availability of Mineral P
- Mycorrhizal Fungi Extension of the Root System
- Enzymes (Phosphatases) Increase Availability of Organic P
- Humic/Fulvic Acids Chelate Soil Cations and Feed Microbes
- Marine Extracts Soil Applied Stimulates Microbes and Roots
 Sugars Foliar Applied Mitigates Stresses (Drought)

Marine Extracts – Soil or Foliar Applied – Plant Health

- Sources vary from algae, to seaweed, to kelp
- Most common is Ascophyllum nodosum (brown seaweed)
- Others are red or green algae
- All contain multiple biomolecules (amino acids, carbohydrates, plant hormones...)

Marine Extracts - Mechanism

- Multiple compounds means multiple modes of action
- Impossible to know which is having the primary influence in a given environment
- In general, can be interpreted as an "espresso" shot to the root zone when soil applied

Marine Extracts - Components

- Fucoidans (sulfated carbohydrate)
 - Known to increase plant defense

- Alginate (negatively charged carbohydrate)
 - Accounts for ~ 40% of algae biomass
 - Known to stimulate plant growth

Toggle[™] is derived exclusively from Ascophyllum nodosum marine plants harvested from the North Atlantic coastal waters of Nova Scotia, Canada. It is a source of naturally occurring major and minor nutrients, carbohydrates, amino acids and natural substances that enhance crop vigor, nutrition and quality resulting in improvements in plant development and yield.

Key Takeaways – Marine Extracts

- Marine Extracts are complex blends of metabolites providing versatility in their use
- When foliar applied they can mitigate drought stress by regulating water use of soybean
- Soil applications promote root growth and soil microbial activity for an improved rhizosphere

Sugars – Soil or Foliar Applied – Plant Health

- Compounds containing carbon, oxygen and hydrogen
- Can be individual units (monosaccharide), pairs (disaccharide), or chains (polysaccharide)
- Direct energy source for soil microbes, or a signaling molecule in plants

Common Sugars

Biologicals Summary

- Biologicals can be effective at increasing crop grain yields
- Biological efficacy depends upon the type of product utilized, placement, and timing
- To optimize the benefit it is key to understand how the product of interest works, and where to incorporate it into your system

Biologicals Summary

- The biological market is vast and full of a variety of product options for growers
- These multiple products provide many opportunities for better crop management and potential for higher crop grain yields
- Each product interacts with the environment in which applied

Biologicals Summary

- While certain biologicals are similar in type (category), each product is unique
- It is important to fully understand the product of interest to optimize performance across environments and systems

Traditional View of Biologicals

Increase in grain yield

Greater nutrient uptake

Higher fertilizer use efficiency

A Tool For Soil Health?

Biological Indicators and Soil Functions

Soil Quality Indicator	
Earthworms ^{b,d}	
Particulate Organic Matter a,c	
Potentially Mineralizable Nitrogen a,c	
Soil Enzymes ^a	
Soil Respiration a,b,c	

Table 1. Role of soil enzymes

Enzyme	Organic Matter Substances Acted On	End Product	Significance	Predictor of Soil Function
Beta glucosidase	carbon compounds	glucose (sugar)	energy for microorganisms	organic matter decomposition

Function

 Beta glucosidase is an enzyme that measures soil quality, as well as serves as an indicator of residue decomposition

Soil β-Glucosidase Activity as Influenced by Biological Treatment and Time

	Days after after Application		
Biological	3	22	
-	μmol pNP / g / h		
Untreated	0.55	0.63	
Microbial Blend	0.51	0.71	
Marine Extract	0.43	0.80	
Phosphorus Solubilizer	0.61	0.74	

CPL Perspective on Biostimulants

- Understand what they do and how they work before trying
- Know that they are not a replacement for good crop management
- Consider that there may be greater opportunity beyond grain yields

Best Chance of Success

Know your starting point

Have a goal on what you wish to achieve

Special Thanks to Illinois Soybean Association

For More Information: Crop Physiology Laboratory University of Illinois http://cropphysiology.cropsci.illinois.edu

