Conservation Practices to Improve Sustainability

Better Bean Series

Peoria, IL

Saving the land that sustains us

- Protecting farm and ranch land
- Promoting sound farming practices

Keeping farmers on the land

Todays presentation

- Tillage Trends
- Weather
- Nutrient Loss Reduction Strategy
- Conservation practices to improve sustainability
- Conservation Cropping Systems

Tillage Transect Survey

- Ephemeral gully erosion has been cut in half since 2001
- Steady decrease in no-till soybean acres since 2006
- Corn no-till numbers consistent but low

Tolerable Soil Loss?

- T by 2000 campaign started in 1983
- In 2000 86% of cropland was <T
- 2018 -- 79% was <T

Climate Changes

- "We're getting more of our rain in one-off events, followed by longer dry spells. If you've got a tiled field, you've got the ability to handle that water you're OK, but if you don't, you're in trouble," Eric Snodgrass-Atmospheric Scientist.
- Midwest growing season is getting longer
- Growing conditions become more favorable in the Midwest

Rainfall Intensity and Frequency

 2009-17 average flows average ~20% greater than 1980-96

Observed Number of Extreme Precipitation Events

Annual grain production systems are leaky, especially in high precipitation environments. The 4Rs can help but conservation practices (infield and edge-of-field) are also needed.

 IL NLRS calls for a 25% reduction in total Phosphorus & a 15% reduction in nitrate-N by 2025; Ultimate goal is 45% reduction for both

Example Statewide Results for P

		Practice/Scenario	Total P reduction per acre (%)	Total P reduced (million lb P)	Total P Reduction % (from baseline)	Cost (\$/lb P removed)
		Baseline		37.5		
	In-field	Convert 1.8 million acres of conventional till eroding >T to reduced, mulch or no-till	50	1.8	5.0	-16.60
		P rate reduction on fields with soil test P above the recommended maintenance level	7	1.9	5.0	-48.75
		Cover crops on all corn/soybean acres	30	4.8	12.8	130.40
		Cover crops on 1.6 million acres eroding>T currently in reduced, mulch or no-till	50	1.9	5.0	24.50
	ie Id	Wetlands on 25% of tile-drained land	0	0	0.0	
	Edge- of-field	Buffers on all applicable crop land	25-50	4.8	12.9	11.97
	Land use change	Perennial/energy crops equal to pasture/hay acreage from 1987	90	0.9	2.5	102.30
		Perennial/energy crops on 1.6 million acres>T currently in reduced, mulch or no-till	90	3.5	9.0	40.40
	7 0	Perennial/energy crops on 10% of tile-drained land	50	0.3	0.8	250.07

NLRS Scenario

Conservation Practices

- Nutrient Management
- No-till/Strip-till
- Cover Crops
- Crop Rotation/Crop Diversity
- Conservation Cropping Systems

4 Principles for Increasing the Health of your Soil

- Maximize Bio-Diversity
- Maximize the amount of continuous living roots in the soil
- Maximize Soil Cover
- Minimize Disturbance
- 5th---Livestock

Nutrient Management

- 4R's used as the foundation for Conservation Plan
- MRTN calculator for Nitrogen usage
- No fertilizer or manure applied on frozen or snow covered cropland

_	Mathad	Results	SOIL TEST RATINGS						Calculated Cation	
Test	Method		Very Low	Low	Medium	Optimum	Very High	Exchange Capa		
Soil pH	1:1	6.6						1	2.8 m	eq/100
Buffer pH									ulated (
Phosphorous									Saturati	
P1 Weak Bray	P1	24 ppm						l	%sat	med
Bicarb-P	Olsen	13ppm						K	2.2	0.
Phosphorus (P)	МЗ	38 ppm						Ca	77.7	9.
Potassium (K)	МЗ	112 ppm			_			Mg H	13.3 6.3	1. 0.
Calcium (Ca)	M3	1989 ppm						П Na	0.7	0.
Magnesium (Mg)	МЗ	204 ppm						INA	0.7	U
Sulfur (S)	МЗ	6 ppm								
Boron (B)	МЗ	0.3 ppm						K/Mg R		0.17
Copper (Cu)	МЗ	1.2 ppm						Ca/Mg	Ratio:	5.84
ron (Fe)	МЗ	123 ppm								
Manganese (Mn)	МЗ	66 ppm								
Zinc (Zn)	МЗ	1.7 ppm								
Sodium (Na)	МЗ	20 ppm								
Soluble Salts										
Organic Matter	LOI	2.9% ENR								
Nitrate Nitrogen										
			1							
			1							
			1							

U.S. Corn Production and Nutrient Use on Corn

This is impressive - we are doing more with less!!!

No-Till/ Strip-till

- Keeps surface protected
- Allows for nutrient placement
- Creates earthworm habitat
- Improves soil moisture and water infiltration

Let the Earthworms work for you!

- Earth's natural tillers
- Process residue
- Create root channels
- Middens

Cover Crops

Cover Crop Benefits

- Faster infiltration of excess surface water
- Relieving compaction and improving structure of over-tilled soil
- Adding organic matter that encourages beneficial soil microbial life
- Enhancing nutrient cycling

Direct Effects of Covers on Nutrient Cycling

- Capture of Nutrients that could or would otherwise be lost from:
 - Leaching below crop root zone
 - Losses from erosion or runoff
 - Losses from denitrification
- Translocate nutrients from below crop root zone to surface
- Fix Nitrogen (legumes)
- Release Nutrients at a later time when needed by crop

Keep the Soil Covered

- Can be accomplished with no-till
- Cover Crops allow for soil surface coverage more consistently

Roots

- There is more root mass in cover crops species than in corn and soybean plants.
- With covers we can go from having living roots in the soil 6 months out of a year to 10-12 months

General Considerations for cover crops

- Short term goals
- Long Term View
- Herbicide Carryover
- Adjust your planter and practices
- Be timely in seeding and termination
- Plant good quality seed

Cereal Rye planted into Corn Stalks

- No-till cereal rye into corn stalks
- Drilling and vertical seeding
- Optimum seeding dates--first half of October
- Rates depend on seeding method and timing (50-70lbs.)
- Aerial seeding is an option but not usually needed due to wide planting window

Bio-Diversity and Crop Rotation

 Plant species diversity above ground will lead to an increase in diversity below the

soil surface

Identifying Soil Health Improvements

- Laboratory Soil Health testing
- Shovel Test
- Boot Test

Conservation Cropping Systems

- A Conservation Cropping System is a suite of practices that work synergistically to replenish soil life and restore organic matter to agricultural soils.
- Over time these improvements increase nutrient efficiency and farm profitability, reduce sediment and nutrient losses, and make farms more resilient to extreme weather conditions.
- https://www.farmland.org/initiatives/soil

Saving the Land that Sustains Us

www.farmland.org