

People... Products... Knowledge"...

Implementing PGRs in Soybeans Brad Hammes Helena Agri-Enterprises, LLC

Why is it that we can map the genome of corn, yet in 2019 we still can't get a firm grasp on using Plant Growth Regulators in soybeans?

It's <u>VERY</u> complicated

In this context, it's easier to alter the genes of a soybean plant than it is to figure out how to gain a ROI from a PGR

What do we know about PGRs

- The term Plant Growth Regulator (PGR) refers to synthetic hormones, not produced by the plant
- They are responsible for every plant function from breaking seed dormancy to maturing grain
- There are 5 main hormones
- There are many secondary hormones
- They may have varying responses based on the development stage and specific part of the plant

Roles of Primary Plant Hormones

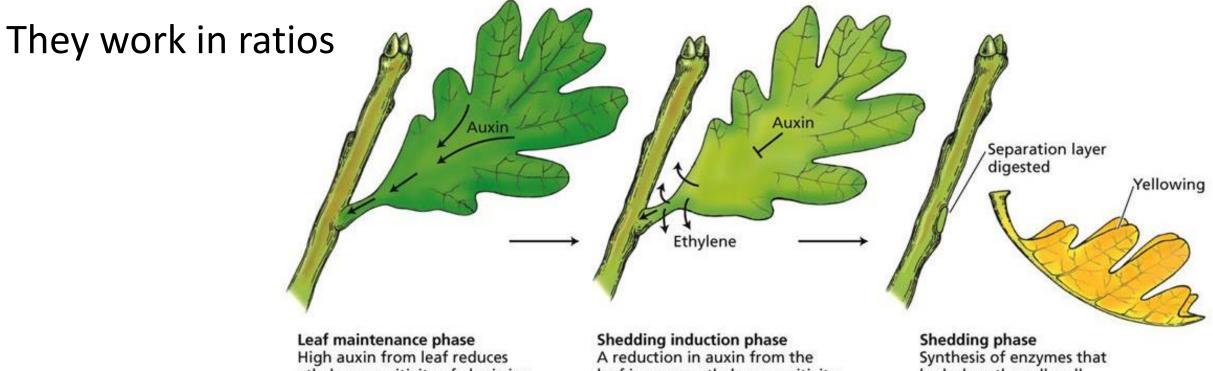
Figure 22.16 Promotion of root hair formation by ethylene in lettuce seedlings Ethylene Air

© 2010

PLANT PHYSIOLOGY, 5e, Figure 22.16

Role of Secondary Plant Hormones

- Jasmonic Acid & Salycylic Acid
 - Plant defense, SAR
- Bassinosteroids
 - Stem elongation and cell division, & vascular differentiation
- Polyamines
 - Mitosis & meiosis, pollination/fertilization


S-adenosyl-methionine

 Strigolactones, Peptide hormones, Nitric Oxide, Karrikins, Triacontanol...

What makes them so complicated

High auxin from leaf reduces ethylene sensitivity of abscission zone and prevents leaf shedding. A reduction in auxin from the leaf increases ethylene sensitivity in the abscission zone, which triggers the shedding phase.

Shedding phase Synthesis of enzymes that hydrolyze the cell wall polysaccharides results in cell separation and leaf abscission.

What makes them so complicated

Overproduction of one can lead to negative results or the production of another

Auxin induced Ethylene biosynthesis Ethylene induced Auxin biosynthesis

What makes them so complicated

- Root development
 - GA promotes root length, without branches
 - GA can induce IAA biosynthesis
 - IAA inhibits root length, but increases lateral root formation
 - With IAA, CYT increases cell number for growth
 - With IAA, ETH increases the development of root hairs
 - Root growth in inversely proportional to IAA concentration

	Too Much	Too Little	Balanced
AUXIN	 Distorted growth (phenoxy herbicide effect) Inhibits elongation May lead leaf fall 	 Insufficient cell division & differentiation Stunted root & shoot growth Poor pollination, flowering Poor sugar movement: poor grain/fruit sizing and quality 	 Activates Ethylene (especially in roots) Cell division/differentiation (w/cytokinin) Signals movement of sugar to grain/fruit Delays fruit senescence Triggers wounding response
GIBBERELLIC ACID (GA)	 Promotes excessive vegetative growth Antagonizes ABA effects Reduce plant responses to stress Inhibits flowering 	 Stunted growth Poor flowering Poor grain/fruit sizing with potential abortion under extremes 	 Promotes cell elongation/division and flowering (long day plants and trees) Breaks dormancy/initiates germination Induces enzyme activity Facilitates leaf and fruit senescence
CYTOKININ	 Promotes excessive vegetative growth Prevents grain/fruit development when not in a balanced ratio with auxin 	 Stunted growth Premature senescence Poor grain/fruit set 	 Cell division/enlargement (with auxin) Grain/fruit formation/sizing (with auxin) Prevent senescence Mobilizes nutrients/photosynthates
ABSCISIC ACID (ABA)	 Inhibits plant growth, photosynthesis Counteracts the effects of GA and cytokinin Induces premature dormancy Reduces photosynthesis Inhibits ripening 	•Delayed plant maturity •Poor grain/fruit ripening •Increased susceptibility to drought and other stress •Poor harvested grain/fruit storability	 Abscission Flowering (short day plants) Stomatal closure during drought Break dormancy (antagonizes GA) Embryo development Plant tolerance to stress
ETHYLENE	 Premature maturity/senescence Premature leaf drop Inhibits elongation (stunting) Can lead to flower & fruit abortion 	 Poor flowering/grain & fruit set Poor grain/fruit sizing and quality Delayed plant senescence 	 Ripens grain/fruit Initiates movement of sugar to grain/fruit for sizing and quality Triggers senescence and abscission

What do we know about soybean?

- Critical YIELD functions
 - Stand establishment
 - Root development (including nodulation)
 - Development of nodes
 - Development of photosynthetic capacity
 - Development of reproductive structures
 - Maintenance of reproductive structures

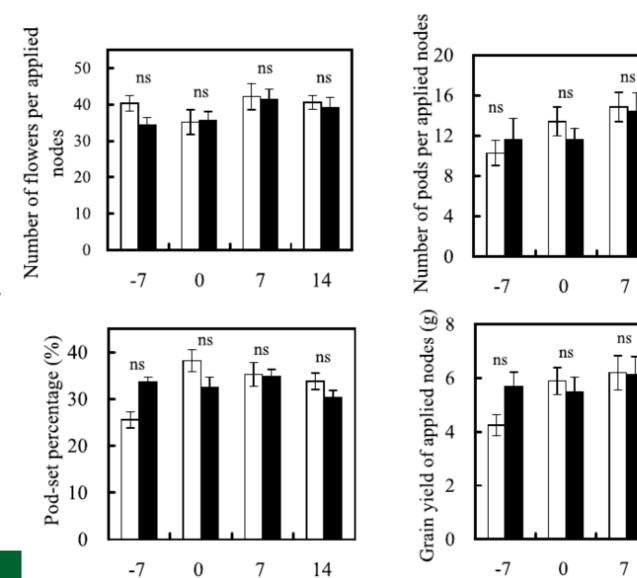
Pods / Acre X Seeds / Pod X Weight / Seed

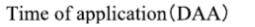
What do we know about soybean?

- ~25% of blooms become pods
 - Environmental / Nutritional stress during reproductive development
 - Evolutionary adaptation
 - Long reproductive period
 - Lots of opportunity to encounter favorable conditions

Soybean Production Meeting

- Current status as it relates to key yield projects
- Sunlight / Energy status
- Water / Nutrient status
- Prioritization of resources
- Likely to abort flowers
- Less likely to abort pods




- Once a project is scrapped it cannot be reinitiated
- Additional resources can be added to current projects

Timing is critical

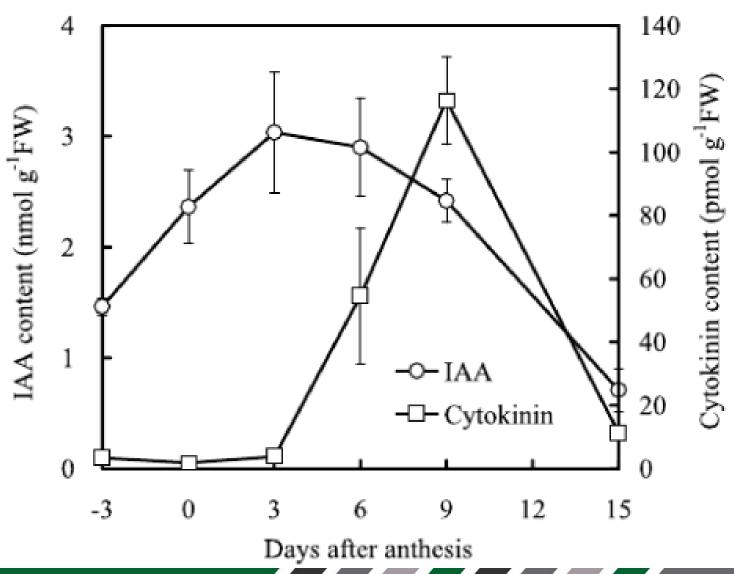
Fig. 4. Effects of IAA application on the number of flowers, pod-set percentage, number of pods and grain yield at IAA-applied nodes (Exp. 2, field, 2003). IAA was applied to racemes at intervals before and after anthesis. Values represent the mean \pm SE (*n*=7). NS; not significantly different between control and applied plots at P<0.05.

Kaori Nonokawa, Makie Kokubun, Takayuki Nakajima, Teiji Nakamura & Ryuji Yoshida (2007) Roles of Auxin and Cytokinin in Soybean Pod Setting, Plant Production Science, 10:2, 199-206, DOI: 10.1626/pps.10.199

ns

14

ns


14

□ Control |

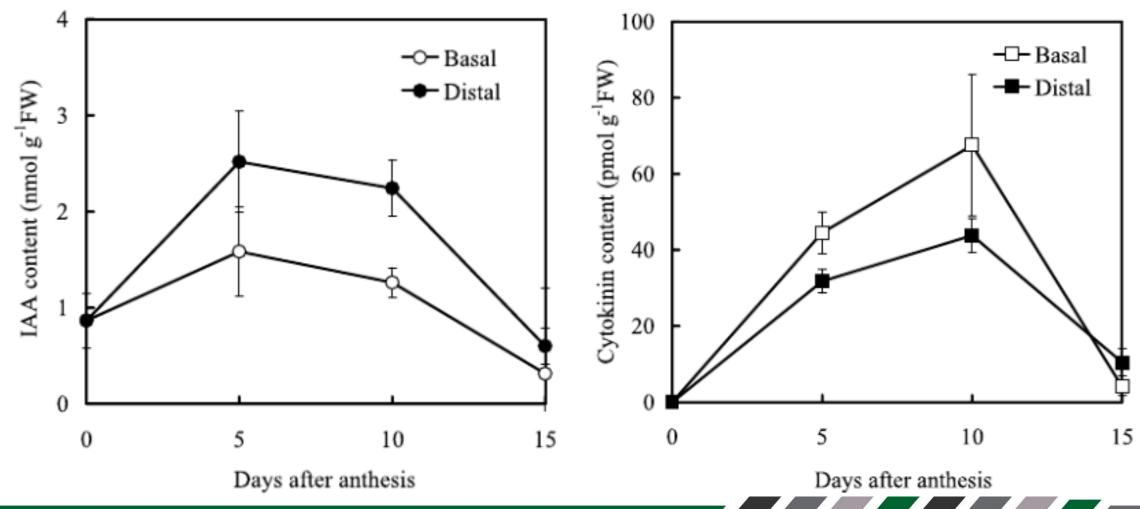

Timing is critical

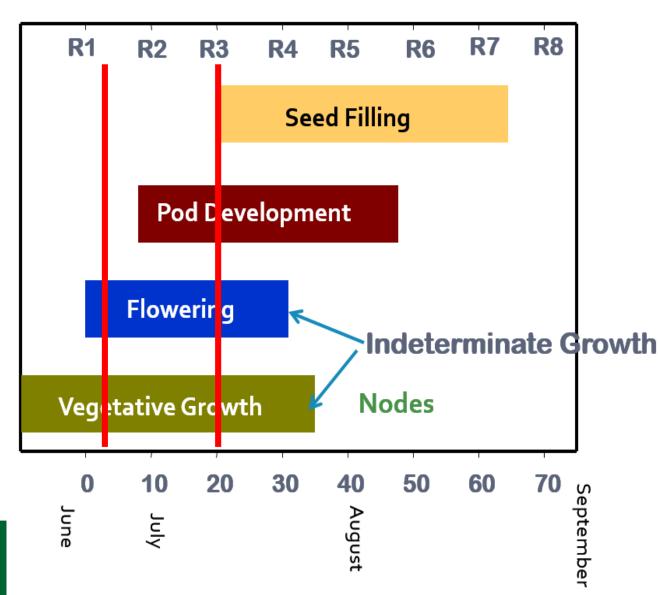
Fig. 1. Changes in the endogenous concentration of IAA and cytokinin (t-ZR equivalent) in racemes during reproductive development of soybean plant (Exp. 1, field, 2004). Racemes were samples for analysis at intervals before and after anthesis. Values represent the mean \pm SE (*n*=6).

Timing is critical

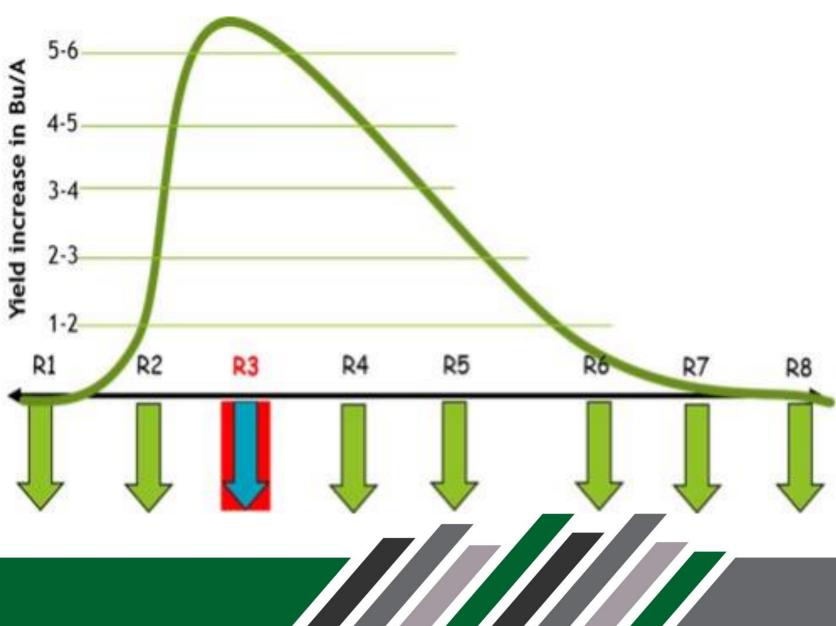
Kaori Nonokawa, Makie Kokubun, Takayuki Nakajima, Teiji Nakamura & Ryuji Yoshida (2007) Roles of Auxin and Cytokinin in Soybean Pod Setting, Plant Production Science, 10:2, 199-206, DOI: 10.1626/pps.10.199

Timing is critical

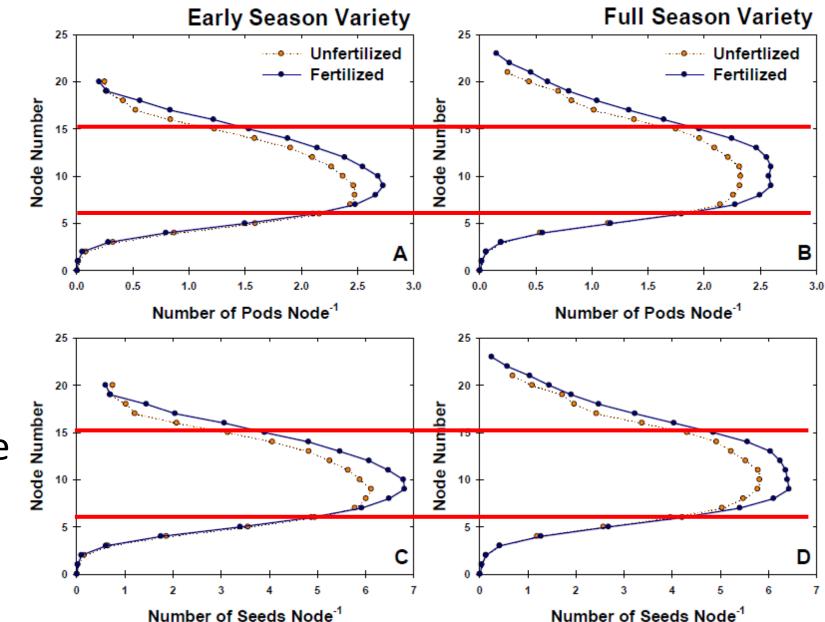
- Within individual racemes, the pod set percentage of basal flowers is considerably higher than that of distal ones. This phenomenon appears to be associated with the endogenous levels of cytokinin; the basal flowers contain a higher percentage.
- This doesn't take into consideration that racemes at different nodes will begin flowering at different times, or that the plant will simultaneously be in several reproductive & vegetative stages.



Where to focus


- Flowering typically begins at 5th or 6th node for normal planting dates
- Highest yielding nodes start at 7th node
- There is less internal competition for earlier flowers
- There is longer time to maturity for earlier flowering nodes

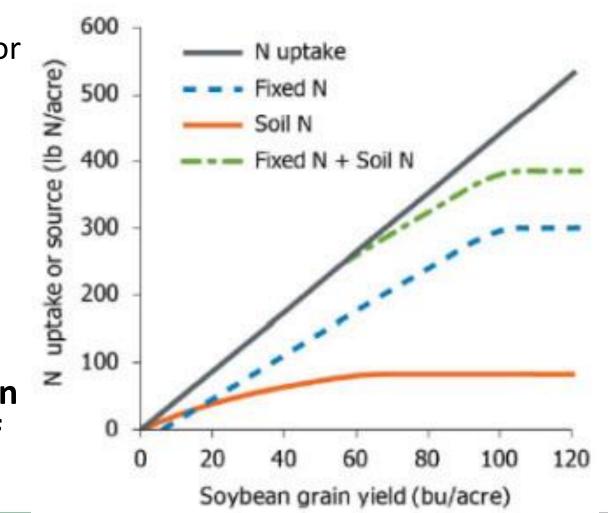
Where to focus


- Our internal trials show the greatest response to fungicide management at R3
- It is better to be slightly late than early
- This is in the absence of white mold as a disease concern

Where to focus

- Nodes 7 15
- Middle of the canopy makes the most grain
- "Top crop" not as impactful as people might think

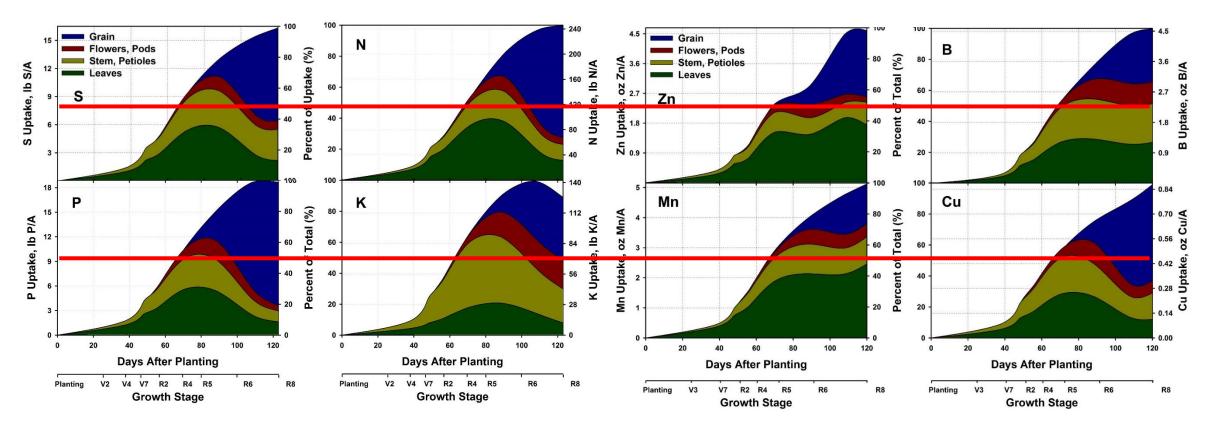
What can you do?


- Manage what you can manage
 - Take care of the fundamentals
 - 1. Manage crop nutrition
 - 2. Protect the crop from pests
 - Target PGR applications to times when there are fewer growth stages
 - 1. Planting, Vegetative, later Reproductive
 - Target times critical to yield
 - 1. Develop canopy/node count
 - 2. Maintain photosynthetic capacity
 - Hope the unmanageable factors don't show up late

HELENA

Manage crop nutrition

- As an example, a generalized N budget for soybean, shows that non-fertilizer sources of N can typically supply enough to grow ~60 bu/acre
 - High yielding soybeans need:
 - 1. Late N fertilizer
 - 2. Better N production from nodules
 - 3. Higher N mineralized from the soil


Which other nutrients have late season need without a reasonable chance of attaining and/or remobilizing them?

Salvagiotti, F., K.G. Cassman, J.E. Specht, D.T. Walters, A. Weiss, and A. Doberman. 2008. Nitrogen uptake, fixation, and response to fertilizer N in soybeans: A review. Field Crops Res. 108:1-13(adapted).

Nutrient Uptake and Partitioning

R.R. Bender, J.W. Haegele, and F.E. Below. 2015. Nutrient uptake, Partitioning, and Remobilization in Modern Soybean Varieties, Agron. J. 107:563-573, DOI: 10.2134/agronj14.0435

What are my options?

- Plant Growth Regulators
 - Products with hormones in the ingredients list
- Strobilurin fungicides (group 11)
 - Research has documented impacts on hormone pathways
- Biostimulants
 - Non-PGRs that impact plant development, often through use of plant extracts

What are my options?

- PGRs & Fungicides
 - Set amount of plant hormone, may or may not be ideal for current development
 - Use of fungicides for plant health can be effective, but may not be good IPM
- Biostimulants
 - Little regulation or oversight regarding claims or product quality
 - Can be more adaptive in stimulating plant development

Megafol

- Megafol genomic activity was assessed on all 25,000 mapped gene sequences of the Arabidopsis plant.
- This list shows a partial list genes upregulated after application of Megafol

	Real and the second				
	Locus Identifier	AnnotationAnnotationAnnotationAnnotation	FUNCTION	MEGAFOL F	
	<u>AT4G10270</u>	wound-responsive family proteinwound-responsive family protein	STRESS wound	62	
	<u>AT3G10040</u>	transcription factortranscription factortranscription factor	STRESS anoxia	46	
	<u>AT3G02550</u>	LOB domain protein 41 / lateral organ boundaries domain protein 41	STRESS biotic eFP	33	
	<u>AT4G33070</u>	pyruvate decarboxylase, putativepyruvate decarboxylase, putative	STRESS anoxia	25	
	AT2G37870	protease inhibitor/seed storage/lipid transfer protein (LTP) family prot	STRESS salt eFP	18	
	<u>AT5G09520</u>	hydroxyproline-rich glycoprotein family protein	HORMONE ABA eFP	17	
	<u>AT4G33560</u>	similar to wound-responsive protein-related [Arabidopsis thaliana] (TA	STRESS wound	16	
	<u>AT1G77120</u>	ADH1 (ALCOHOL DEHYDROGENASE 1); alcohol dehydrogenase	STRESS anoxia	14	
	<u>AT2G47780</u>	rubber elongation factor (REF) protein-related	STRESS salt eFP	10	
	<u>AT5G04120</u>	phosphoglycerate/bisphosphoglycerate mutase family protein	METABOLISM	10	
	<u>AT5G62520</u>	SRO5 (SIMILAR TO RCD ONE 5); NAD+ ADP-ribosyltransferase	STRESS cold wound eFP	8	
	<u>AT5G13900</u>	protease inhibitor/seed storage/lipid transfer protein (LTP) family prot	HORMONE ABA eFP	8	
	<u>AT1G76650</u>	calcium-binding EF hand family protein	STRESS cold eFP	8	
	<u>AT1G52690</u>	late embryogenesis abundant protein, putative / LEA protein, putative	STRESS osmotic eFP	7	
•	<u>AT4G16780</u>	ATHB-2 (Homeobox-leucine zipper protein HAT4); DNA binding / trar	STRESS cold eFP	7	
	<u>AT4G36610</u>	hydrolase, alpha/beta fold family protein	HORMONE ABA eFP	7	
	<u>AT1G02930</u>	[AT1G02930, ATGSTF6 (EARLY RESPONSIVE TO DEHYDRATION	STRESS drought	6	
	<u>AT5G07010</u>	sulfotransferase family proteinsulfotransferase family protein	STRESS wound eFP	5	
	<u>AT5G59320</u>	LTP3 (LIPID TRANSFER PROTEIN 3); lipid binding	STRESS osmotic salt eFF	5	
	<u>AT2G43620</u>	chitinase, putativechitinase, putativechitinase, putative	STRESS osmotic eFP	5	
	<u>AT1G72360</u>	ethylene-responsive element-binding protein, putative	HORMONE ETHYLENE	5	
	<u>AT3G13310</u>	DNAJ heat shock N-terminal domain-containing protein	STRESS heat	5	
	<u>AT5G45340</u>	CYP707A3 (cytochrome P450, family 707, subfamily A, polypeptide 3		5	
	<u>AT3G23170</u>	similar to ATBET12 [Arabidopsis thaliana] (TAIR:AT4G14450.1)	STRESS cold eFP	5	
	<u>AT1G19250</u>	FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1); monooxygen		5	
	<u>AT2G34390</u>	[AT2G34390, NIP2;1/NLM4 (NOD26-LIKE INTRINSIC PROTEIN 2;1]	STRESS anoxia	5	
	<u>AT5G40590</u>	DC1 domain-containing proteinDC1 domain-containing protein	HORMONE ETHYLENE (4	
	<u>AT5G22460</u>	esterase/lipase/thioesterase family protein	STRESS osmotic eFP	4	
	<u>AT3G02480</u>	ABA-responsive protein-relatedABA-responsive protein-related	STRESS osmotic eFP	4	
	<u>AT2G43570</u>	chitinase, putativechitinase, putativechitinase, putative	STRESS osmotic eFP	4	
	<u>AT2G47770</u>	benzodiazepine receptor-relatedbenzodiazepine receptor-related	STRESS osmotic eFP	4	
	<u>AT5G66400</u>	RAB18 (RESPONSIVE TO ABA 18)	STRESS osmotic	4	
	<u>AT4G37770</u>	ACS8 (1-Amino-cyclopropane-1-carboxylate synthase 8)	HORMONE ETHYLENE	4	
	<u>AT5G13580</u>	ABC transporter family proteinABC transporter family protein	TRANSPORT	4	
	<u>AT5G54490</u>	PBP1 (PINOID-BINDING PROTEIN 1); calcium ion binding	HORMONE AUXIN	4	
	<u>AT3G21720</u>	isocitrate lyase, putativeisocitrate lyase, putative	METABOLISM	4	
	<u>AT5G50260</u>	cysteine proteinase, putativecysteine proteinase, putative	HORMONE ABA eFP	4	
	<u>AT5G10230</u>	ANN7 (ANN7, ANNEXIN ARABIDOPSIS 7); calcium ion binding / cal		4	
	<u>AT4G33550</u>	lipid bindinglipid bindinglipid bindinglipid bindinglipid binding	HORMONE ABA eFP	4	
	<u>AT2G22510</u>	hydroxyproline-rich glycoprotein family protein	HORMONE ABA eFP	4	

What are my options?

- Why might products not work consistently?
 - Not the right mix or rate of PGRs
 - Not the right timing for the product based on growth stage
 - Missed application window
 - Not the limiting factor, fundamentals not met
 - Product isn't what it claims to be

Application timing

- Early season (Pre R1)
 - Plants naturally produce high levels of IAA
 - Overcoming stress, environmental and pesticide metabolism
- Late season (R3)
 - Managing plant stress
 - 1. Increasing ABA
 - 2. Managing crop nutrition
 - Increasing time in photosynthesis
 - 1. Increasing IAA

IF

- Plant hormones act in a balance with other plant hormones
- The ratio for desired response is dependent on growth stage
- Soybeans are often in multiple growth stages
- All of this can be superseded by plant stress

It's no wonder we haven't been able to gain consistent results

IF <u>WE</u>

- Manage crop nutrition
- Target the type of response we want to the type of product we apply
- Target applications to times when the plant will have a more uniform response
- Target reproductive applications for growth stage of key yield producing nodes

We'll give ourselves the best chance to see positive ROI from this valuable management tool

People... Products... Knowledge...

Thank You

